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Simple example of partial synchronization of chaotic systems
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A system of three nonsymmetrically coupled skew tent maps is considered. It is shown that in a large region
of the parameter space, partial chaotic synchronization takes place. This means that two variables synchronize,
while the third does not synchronize with the first two, and while the global motion is chaotic. The different
bifurcations that lead to this behavior, as well as to its disappearance, are dis¢846€3-651X98)01011-3

PACS numbd(s): 05.45+b

I. INTRODUCTION and the one-dimensional dynamical system generated by the

iterations off on | has a chaotic behavior, because the slope
The fact that two chaotic systems may synchronize whileof f is always greater than 1 in absolute value. Furthermore,
without losing their chaotic behavior is now well known, and this dynamical system has a natural invariant meaguoa |
the mechanisms of synchronization and its loss have awith a densityp(x). [8].
tracted much attention in the mathematical and physical lit- Note that the functior is not symmetrical under permu-
erature(e.g., Refs[1-3]). A simple introduction based on tations ofx,y,z. The diagonal planes iR?,
the same type of chaotic system that is considered in this
paper is given in Ref[4]. Synchronization effects in large
ensembles of coupled chaotic systems, hereafter cedibsl
have also been considergi6]. In large systems, usually not I,,={(x,y,2)|x=2}, )
all cells synchronize, i.e., we have the phenomenon of partial . . .
synchronization. The purpose of this paper is to study irfire Invariant undef, but not the plandly,. The main
some detail partial synchronization in a much simpler systerﬁ“agonal
of just three coupled cells, with nonsymmetric coupling,
where, apart from Refl7], partial chaotic synchronization
has not been reparted so far. We think that this phenomenqg g|so invariant.
will have many applications in engineering, in particular in - Now we consider the three-dimensional dynamical system
signal precessing. generated by the iterations d¢f. Restricted toD, it is
equivalent to the one-dimensional system generated by the

ny:{(X:YaZ)|X:y}'

D={(x,y,z)|x=y=z}=nyﬂsz (6)

Il. EXAMPLE iterations of f. Restricted toll,y, it is equivalent to the
We consider the three-dimensional magk®— R ';}/(\;tr)]—sdl(;?ensmnal dynamical system generated by the itera-
X f[x+e(z—x)] X f[x+e(z—x)]
Py || el ) @ P Flon’ (z)” f[z+8(x—z>])’ 7
z f[z+e(x—2)]

and restricted tdl,, it is equivalent to the two-dimensional

where thef is the skew-tent map defined by dynamical system generated by the iterations of

£ b ; X f(x)
X) = b-— or xsa =F|ryen: )
1 PFloca 1y iy veeyn) @
f(x)= 2 _ L . .
1—Xx The question addressed in this paper is under what condi-
fa(x) = b_l— a for x>a, tions the trajectories will converge 1d,,, toIl,,, and/or to

D, and thus have an asymptotic behavior governed by Egs.

and with parameter valuesandb restricted to
0<a<l1l, maxa,1-a}<bs<l. 3

The functionf has the attracting invariant interval
I=[f(b),b]C[0,1], 4
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(7) and(8) and the iterations of, respectively.

Ill. PARTIAL CHAOTIC SYNCHRONIZATION

Partial synchronizationis the phenomenon when, in a
dynamical system, only part of the state variables synchro-
nize and the others do not synchronize with them. Thus the
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trajectories converge to an invariant linear subspace defined V. REPELLING OF THE DIAGONAL
by the equality of the synchronizing variables. If the motion
in this subspace is chaotic, we speakpaftial chaotic syn-
chronization For three-dimensional systems, two variables
undergo partial chaotic synchronization, if the following
conditions are satisfied. 1-¢ 0 .
(1) The corresponding plane is invariant under the action
of the map. J=f'(x){ 0 1-e& & |, (12
(2) The plane is stable under three-dimensional dynamics.
(3) The diagonal of the plane is transversally repelling, in

As a measure for the repelling of the diagoBalve con-
sider the Lyapunov exponents of trajectorieinThe Jaco-
bian matrix ofF in a point (x,x,x) of D is

order to avoid total SynChroniZation. Its eigenvectors and eigenvalues are
(4) The motion in the plane is chaotic.
In our three-dimensional system the invariant linear sub- vp=1'(x), ep=(1,1,1),
spaces arél,, andIl,,. Thus partial chaotic synchroniza-
tion may take place betweenandy, or betweerx andz. vy =F (X)(1-2¢), &y,=(1,1-1), (13)
Let us remark that the coexistence of total and partial
synchronization is also possible. In this case there are the v,=t'(x)(1—¢), e€,=(0,1,0).
first attractor on the diagonal and the second attrésitout-
side the diagonal in the invariant plane. Note thatep lies inD, e, lies inIl,,, ande,, lies inTl,.
Accordingly, the Lyapunov exponents of a trajectoryDn
IV. ASYMPTOTIC STABILITY OF THE INVARIANT are as follows.
PLANES For deviations within the lin®,
Proposition. With respect to the three-dimensional dy- =
namics generated by the iterations of the map defined in Egs. T /
(1) and(2), and in the parameter ran¢®), (a) the planell,, Mo K“Tm K kgo In[f* (<o, 4

is globally asymptotically stable if and only if
and the same as for the one-dimensional dynamics.

1— é<8<1+ é (9) For deviations within the planH,, transversal td,
_ _ _ Ayxy=Ap+In|1—2¢]. (15
and(b) the plan€l,, is globally asymptotically stable if and
only if For deviations within the planH,, transversal t®,
E_i<8<l+i (10) )\XZ:)\D+|H|1—8|. (16

Note that the value okp, and thus of all Lyapunov expo-
where nents, depends on the trajectory. However, (loebesgug
b b almost all trajectories its value is
C= max[a , —] . 11 - b
)\D:j In|f"(x)|p(x)dx
Proof: For any trajectory {(x(k),y(k),z(k))|k f(b)

=0,1,2...}, we have a b b b
ZJ' In a p(X)dX-l-f In m p(x)dx. (17)
[x(k+ 1) =y(k+ 1) =[x (k) + e[ 2(k) = x(K) )~ F(y(k) e )
+e[z(k)—y(K)])| We will distinguish two forms of repelling of the diagonal
within TT,,.
=maxf’(x)[|1—e|[x(k)—y(K)| (i) Weak repelling if for almost all trajectories irD we
X

have\,,>0, which is the case if
=C|1-¢|[x(k)—y(K)|. _
Axy=Ap+tIn[1—2¢|>0 (18

Thus |x(k) —y(Kk)| converges to zero i€|1—¢|<1, which
is equivalent to conditio9). Furthermore, it is easy to show The changing of the sign of this Lyapunov exponent from
that at the moment =1+ (1/C), the fixed point for the map negative to positive is called tH@owout bifurcation
f on the diagonal becomes unstable in the direction transver- Strong repelling if for all trajectories inD we have,,
sal to the plane, which causes the loss of Lyapunov stability>0. In this case, the attractor dhis a transversally repel-
of the plane. The proof of pafb) is analogous. Note that in ling chaotic saddld2], i.e., it attracts only points fronD
the intersectiorr e[ 1—(1/C),(1/2)+(1/2C)] of the two re- itself and its preimages.
gions from(a) and(b), the diagonaD is globally asymptoti- Similar conditions can be given for weak and strong re-
cally stable, i.e., we have total synchronization. pelling of D within II,,.
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FIG. 1. The measurew™* =m*(b) of the interval[ f(b),a] for
the skew tent mag2) ata=0.63.
A. Weak repelling
The value offD depends on the invariant densjtyx), z
which can only be determined by simulation, except lior
=1, where it is constari4], and at some other values bf
for example, at homoclinic bifurcations of unstable periodic
points. Actually, only the measum* =f?(b)p(x)dx of the
interval [ f(b),a] matters:
b -0.2
Ae=m*Inl =] +(1=m* ) -0.2 1.2
Ap=m*In a) (1—m*)In 1—a (19 b

FIG. 2. Chaotic attractofblack and its basin of attraction
This measuren* is represented in Fig. 1 as a functiontof (gray) for different values of parameteesat a=0.63 andb=0.9:
for a=0.63. (a) e=0.77—just after blowout bifurcation of the attractor on the
diagonal;(b) e = 1.085—just before the boundary crisis. The attrac-
B. Strong repelling tor coincides with absorbing area with boundary created by seg-

mentsL,, belonging to the iterations of critical lines givéR3). k
Here we suppose that>0.5. The casea<0.5 can be iygicates the number of iteration.

treated similarly. In order to find the condition for strong

repelling, the trajectory With_the smallest Lyapunov expo- VI. MOTION IN THE PLANE

nent\p has to be found. This can be achieved using sym- _ o

bolic dynamics[8]. It is the trajectory whose symbolic se- ~ We shall discuss only the motion in the plaHg, . The
quence has the largest proportionld$ with respect tdR’'s.  analysis for the planél,, is analogous. After the blowout

Its symbolic sequence is of the form bifurcation, when the diagon&® becomes transversally un-
stable in the planél,,, all trajectories that are repelled from
N-1p\® _ D will remain bounded because of the existence ofahn
(L R) =LL...LRLL...LR...

sorbing ared[9,10]. The boundary of this area that is invari-

ant under the action d¥,, is formed by a finite number of
(20 iterations ofcritical lines, 1.e., the two lines where the linear
regions of the piecewise linear méjy,, join:

N-1 N-1

which corresponds to a periodic trajectory with- 1 points

in the intervall f(b),a] and one point in the intervgh,b].

The bifurcation when this trajectory appears takes place at ) 1-e a

the parameter values when the trajectory originated from ' e e 1-¢ 1-

=b passes through the critical poirt=a. The correspond-

ing parameter relation for the appearance of the trajectory igxamples of absorbing areas which are at the same time
N-1 chaotic attractors, and their basins of attraction, are given in

f1 “(fa(b))=b. (2)  Fig. 2 for two different values of parameters.

) ) - ] Increasinge the boundary of the basin of attraction
This leads to the following condition for the chaotic attractorigyches the attractor which leads to its destruction. The tra-

on D to be a transversally repelling chaotic saddldlig,: jectories then diverge to infinity. The numerically computed
No1 curve of this boundary crisis is shown in Fig. 3. It is the right

P 5‘>[a (1-a)l; 22 border of the domain of partial synchronization.
' 2b ' In addition, in Fig. 3 an area is horizontally hatched where
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VII. CONCLUSION

We have presented detailed results on the behavior of
three nonsymmetrically coupled skew-tent maps. We have
shown that, in a large region of the parameter space, the
phenomenon of partial chaotic synchronization takes place,
i.e., a chaotic motion where two of the three state variables
synchronize, whereas the third does not synchronize with the
other two. The various bifurcations that take place have been
identified in thes-b parameter plane for fixea, wheree is
the coupling constang the breakpoint of the skew tent map
andb its maximum. The existence of a region in this param-
eter plane is also shown where there is coexistence of total
synchronization and partial synchronization, depending on
the initial condition.

ACKNOWLEDGMENTS

FIG. 3. Regions in parametet (b) plane in which the regime
of chaotic totalx=y=z or chaotic partial synchronizatior=y

#z are asymptotically stable in three-dimensional state space;

=0.63.

This work was financially supported by the Swiss Na-
tional Science Foundation under Grant No. 7UKPJ 048229
(in cooperation with the CEEC/NIS states, financed by the

in the planell,, two chaotic attractors outside of the diago- ministry of foreign affairy and Grant No. 2000-047172.96.
nal exist. Before blowout bifurcation, the basin of attractor Yu. Maistrenko and O. Popovych acknowledge the hospital-

on the diagonal becomes globally riddIgtL] with the ba-

sins of these two additional attractors.

ity of the EPFL, and O. Popovych acknowledges the finan-
cial support from the Swiss Government.

[1] J.C. Alexander, J.A. Yorke, and Z. You, Int. J. Bifurcation [7] K. Pyragas, Phys. Rev. B4, R4508(1996; M. S. Vieira and

Chaos Appl. Sci. Engz, 795(1992.
[2] P. Ashwin, J. Buescu, and I|. Stewart, Nonlinear&ty 703

(1996.

[3] Yu. Maistrenko and T. Kapitaniak, Phys. Rev. 3, 3285

(1996.

A. J. Lichtenbergjbid. 56, R3741(1997.

[8] W. de Melo and S. van StrierQne-Dimensional Dynamics
(Springer-Verlag, Berlin, 1993

[9] Yu. L. Maistrenko, V. L. Maistrenko, A. Popovich, and E.
Mosekilde, Phys. Rev. LetB0, 1638(1998.

[4] M. Hasler and Yu. Maistrenko, IEEE Trans. Circuits Syst., |: [10] C. Mira, L. Gardini, A. Barngola, and J.-C. Cathaf2haotic
Fundam. Theory Appl44, 856 (1997).

[5] K. Kaneko, Physica D1, 137 (1990; 103 505(1997.
[6] D. H. Zanette and A. S. Mikhailov, Phys. Rev. &, 276

(1998.

Dynamics in Two-Dimensional Noninvertible Magé/orld
Scientific, Singapore, 1996

[11] Yu. Maistrenko, T. Kapitaniak, and P. Szuminski, Phys. Rev.
E 56, 6393(1997.



