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Simple example of partial synchronization of chaotic systems
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A system of three nonsymmetrically coupled skew tent maps is considered. It is shown that in a large region
of the parameter space, partial chaotic synchronization takes place. This means that two variables synchronize,
while the third does not synchronize with the first two, and while the global motion is chaotic. The different
bifurcations that lead to this behavior, as well as to its disappearance, are discussed.@S1063-651X~98!01011-3#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

The fact that two chaotic systems may synchronize wh
without losing their chaotic behavior is now well known, an
the mechanisms of synchronization and its loss have
tracted much attention in the mathematical and physical
erature~e.g., Refs.@1–3#!. A simple introduction based on
the same type of chaotic system that is considered in
paper is given in Ref.@4#. Synchronization effects in larg
ensembles of coupled chaotic systems, hereafter calledcells,
have also been considered@5,6#. In large systems, usually no
all cells synchronize, i.e., we have the phenomenon of pa
synchronization. The purpose of this paper is to study
some detail partial synchronization in a much simpler sys
of just three coupled cells, with nonsymmetric couplin
where, apart from Ref.@7#, partial chaotic synchronization
has not been reparted so far. We think that this phenome
will have many applications in engineering, in particular
signal precessing.

II. EXAMPLE

We consider the three-dimensional mapF:R3→R3

F:S x

y

z
D °S f @x1«~z2x!#

f @y1«~z2y!#

f @z1«~x2z!#
D , ~1!

where thef is the skew-tent map defined by

f ~x!55
f 1~x! 5 b

x

a
for x<a

f 2~x! 5 b
12x

12a
for x.a,

~2!

and with parameter valuesa andb restricted to

0,a,1, max$a,12a%,b<1. ~3!

The functionf has the attracting invariant interval

I 5@ f ~b!,b##@0,1#, ~4!
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and the one-dimensional dynamical system generated by
iterations off on I has a chaotic behavior, because the slo
of f is always greater than 1 in absolute value. Furthermo
this dynamical system has a natural invariant measurem on I
with a densityr(x). @8#.

Note that the functionF is not symmetrical under permu
tations ofx,y,z. The diagonal planes inR3,

Pxy5$~x,y,z!ux5y%,

Pxz5$~x,y,z!ux5z%, ~5!

are invariant underF, but not the planePyz . The main
diagonal

D5$~x,y,z!ux5y5z%5PxyùPxz ~6!

is also invariant.
Now we consider the three-dimensional dynamical syst

generated by the iterations ofF. Restricted toD, it is
equivalent to the one-dimensional system generated by
iterations of f . Restricted toPxy , it is equivalent to the
two-dimensional dynamical system generated by the ite
tions of

Fxy5Fu$x5y% : S x

zD °S f @x1«~z2x!#

f @z1«~x2z!#
D , ~7!

and restricted toPxz it is equivalent to the two-dimensiona
dynamical system generated by the iterations of

Fxz5Fu$x5z% : S x

yD °S f ~x!

f @y1«~x2y!#
D . ~8!

The question addressed in this paper is under what co
tions the trajectories will converge toPxy , to Pxz , and/or to
D, and thus have an asymptotic behavior governed by E
~7! and ~8! and the iterations off , respectively.

III. PARTIAL CHAOTIC SYNCHRONIZATION

Partial synchronizationis the phenomenon when, in
dynamical system, only part of the state variables synch
nize and the others do not synchronize with them. Thus
6843 © 1998 The American Physical Society
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trajectories converge to an invariant linear subspace defi
by the equality of the synchronizing variables. If the moti
in this subspace is chaotic, we speak ofpartial chaotic syn-
chronization. For three-dimensional systems, two variab
undergo partial chaotic synchronization, if the followin
conditions are satisfied.

~1! The corresponding plane is invariant under the act
of the map.

~2! The plane is stable under three-dimensional dynam
~3! The diagonal of the plane is transversally repelling,

order to avoid total synchronization.
~4! The motion in the plane is chaotic.
In our three-dimensional system the invariant linear s

spaces arePxy and Pxz . Thus partial chaotic synchroniza
tion may take place betweenx andy, or betweenx andz.

Let us remark that the coexistence of total and par
synchronization is also possible. In this case there are
first attractor on the diagonal and the second attractor~s! out-
side the diagonal in the invariant plane.

IV. ASYMPTOTIC STABILITY OF THE INVARIANT
PLANES

Proposition. With respect to the three-dimensional d
namics generated by the iterations of the map defined in E
~1! and~2!, and in the parameter range~3!, ~a! the planePxy
is globally asymptotically stable if and only if

12
1

C
,«,11

1

C
, ~9!

and~b! the planePxz is globally asymptotically stable if and
only if

1

2
2

1

2C
,«,

1

2
1

1

2C
, ~10!

where

C5maxH b

a
,

b

12aJ . ~11!

Proof: For any trajectory $„x(k),y(k),z(k)…uk
50,1,2, . . . %, we have

ux~k11!2y~k11!u5u f „x~k!1«@z~k!2x~k!#…2 f „y~k!

1«@z~k!2y~k!#…u

<max
x

u f 8~x!uu12«uux~k!2y~k!u

5Cu12«uux~k!2y~k!u.

Thus ux(k)2y(k)u converges to zero ifCu12«u,1, which
is equivalent to condition~9!. Furthermore, it is easy to show
that at the moment«516(1/C), the fixed point for the map
f on the diagonal becomes unstable in the direction trans
sal to the plane, which causes the loss of Lyapunov stab
of the plane. The proof of part~b! is analogous. Note that in
the intersection«P@12(1/C),(1/2)1(1/2C)# of the two re-
gions from~a! and~b!, the diagonalD is globally asymptoti-
cally stable, i.e., we have total synchronization.
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V. REPELLING OF THE DIAGONAL

As a measure for the repelling of the diagonalD we con-
sider the Lyapunov exponents of trajectories inD. The Jaco-
bian matrix ofF in a point (x,x,x) of D is

J5 f 8~x!S 12« 0 «

0 12« «

« 0 12«
D . ~12!

Its eigenvectors and eigenvalues are

nD5 f 8~x!, eD5~1,1,1!,

nxy5 f 8~x!~122«!, exy5~1,1,21!, ~13!

nxz5 f 8~x!~12«!, exz5~0,1,0!.

Note thateD lies in D, exy lies in Pxy , andexz lies in Pxz .
Accordingly, the Lyapunov exponents of a trajectory inD
are as follows.

For deviations within the lineD,

lD5 lim
K→`

1

K (
k50

K21

lnu f 8„x~k!…u, ~14!

and the same as for the one-dimensional dynamics.
For deviations within the planePxy transversal toD,

lxy5lD1 lnu122«u. ~15!

For deviations within the planePxz transversal toD,

lxz5lD1 lnu12«u. ~16!

Note that the value oflD , and thus of all Lyapunov expo
nents, depends on the trajectory. However, for~Lebesgue!
almost all trajectories its value is

l̄D5E
f ~b!

b

lnu f 8~x!ur~x!dx

5E
f ~b!

a

lnS b

aD r~x!dx1E
a

b

lnS b

12aD r~x!dx. ~17!

We will distinguish two forms of repelling of the diagonalD
within Pxy.

~i! Weak repelling. if for almost all trajectories inD we
havelxy.0, which is the case if

l̄xy5l̄D1 lnu122«u.0 ~18!

The changing of the sign of this Lyapunov exponent fro
negative to positive is called theblowout bifurcation.

Strong repelling, if for all trajectories inD we havelxy
.0. In this case, the attractor onD is a transversally repel
ling chaotic saddle@2#, i.e., it attracts only points fromD
itself and its preimages.

Similar conditions can be given for weak and strong
pelling of D within Pxz .
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A. Weak repelling

The value ofl̄D depends on the invariant densityr(x),
which can only be determined by simulation, except forb
51, where it is constant@4#, and at some other values ofb,
for example, at homoclinic bifurcations of unstable period
points. Actually, only the measurem* 5* f (b)

a r(x)dx of the
interval @ f (b),a# matters:

l̄D5m* lnS b

aD1~12m* !lnS b

12aD . ~19!

This measurem* is represented in Fig. 1 as a function ofb
for a50.63.

B. Strong repelling

Here we suppose thata.0.5. The casea,0.5 can be
treated similarly. In order to find the condition for stron
repelling, the trajectory with the smallest Lyapunov exp
nent lD has to be found. This can be achieved using sy
bolic dynamics@8#. It is the trajectory whose symbolic se
quence has the largest proportion ofL ’s with respect toR’s.
Its symbolic sequence is of the form

~20!

which corresponds to a periodic trajectory withN21 points
in the interval@ f (b),a# and one point in the interval@a,b#.
The bifurcation when this trajectory appears takes place
the parameter values when the trajectory originated fromx
5b passes through the critical pointx5a. The correspond-
ing parameter relation for the appearance of the trajector

f 1
N21

„f 2~b!…5b. ~21!

This leads to the following condition for the chaotic attrac
on D to be a transversally repelling chaotic saddle inPxy :

u«20.5u.
@aN21~12a!#

2b
1/N. ~22!

FIG. 1. The measurem* 5m* (b) of the interval@ f (b),a# for
the skew tent map~2! at a50.63.
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VI. MOTION IN THE PLANE

We shall discuss only the motion in the planePxy . The
analysis for the planePxz is analogous. After the blowou
bifurcation, when the diagonalD becomes transversally un
stable in the planePxy , all trajectories that are repelled from
D will remain bounded because of the existence of anab-
sorbing area@9,10#. The boundary of this area that is invar
ant under the action ofFxy is formed by a finite number o
iterations ofcritical lines, i.e., the two lines where the linea
regions of the piecewise linear mapFxy join:

L0 : z52
12«

«
x1

a

«
, z52

«

12«
x1

a

12«
. ~23!

Examples of absorbing areas which are at the same
chaotic attractors, and their basins of attraction, are give
Fig. 2 for two different values of parameters.

Increasing « the boundary of the basin of attractio
touches the attractor which leads to its destruction. The
jectories then diverge to infinity. The numerically comput
curve of this boundary crisis is shown in Fig. 3. It is the rig
border of the domain of partial synchronization.

In addition, in Fig. 3 an area is horizontally hatched whe

FIG. 2. Chaotic attractor~black! and its basin of attraction
~gray! for different values of parameters« at a50.63 andb50.9:
~a! «50.77—just after blowout bifurcation of the attractor on th
diagonal;~b! «51.085—just before the boundary crisis. The attra
tor coincides with absorbing area with boundary created by s
mentsLk , belonging to the iterations of critical lines given~23!. k
indicates the number of iteration.
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in the planePxy two chaotic attractors outside of the diag
nal exist. Before blowout bifurcation, the basin of attrac
on the diagonal becomes globally riddled@11# with the ba-
sins of these two additional attractors.

FIG. 3. Regions in parameter («,b) plane in which the regime
of chaotic totalx5y5z or chaotic partial synchronizationx5y
Þz are asymptotically stable in three-dimensional state spaca
50.63.
n
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VII. CONCLUSION

We have presented detailed results on the behavio
three nonsymmetrically coupled skew-tent maps. We h
shown that, in a large region of the parameter space,
phenomenon of partial chaotic synchronization takes pla
i.e., a chaotic motion where two of the three state variab
synchronize, whereas the third does not synchronize with
other two. The various bifurcations that take place have b
identified in the«-b parameter plane for fixeda, where« is
the coupling constant,a the breakpoint of the skew tent ma
andb its maximum. The existence of a region in this para
eter plane is also shown where there is coexistence of t
synchronization and partial synchronization, depending
the initial condition.
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